Overview

https://github.com/kutaydemir07/PyLCSS PyLCSS (Python Low-Code System Solutions) is a professional engineering design platform. It allows engineers to model complex multidisciplinary systems through a node-based visual interface, run parametric CAD and FEA simulations, explore high-dimensional Solution Spaces, and optimise designs using 7 different algorithms — all within a single desktop application.

Built for real-world engineering workflows, PyLCSS features a crash-free multi-threaded architecture, vectorised computation kernels, comprehensive file I/O, and an integrated AI coding assistant.


Scientific Foundation

PyLCSS implements the Solution Space approach for robust design: instead of seeking a single optimal point (which may be sensitive to tolerances), it identifies box-shaped regions of valid designs, enabling decoupled subsystem development.

Markus Zimmermann, Johannes Edler von Hoessle, “Computing solution spaces for robust design”, Int. J. Numer. Meth. Engng., 2013. DOI: 10.1002/nme.4450


Key Features

Parametric CAD Environment

  • 50+ Node Types — Primitives, Booleans, Fillets, Chamfers, Sweeps, Lofts, Shells, Patterns, Imports
  • Topology Optimisation — SIMP with MMA/OC solvers, density/sensitivity filtering, Heaviside projection, symmetry constraints, shape recovery with marching cubes, and direct STL/OBJ export of optimised shapes
  • Advanced Nodes — Thicken, Pipe, Split, Text emboss, Math Expression evaluator, Import STEP/STL
  • Real-Time 3D Viewer — VTK-based with density cutoff preview during optimisation
  • Measurement — Distance, surface area, and volume nodes

Finite Element Analysis (FEA)

  • scikit-fem + Netgen meshing — Tetrahedral/triangular elements
  • Linear Elasticity — Displacement, von Mises stress, compliance
  • FEA Results Nodes — Stress extraction, displacement, reaction forces
  • Remeshing — Surface-to-solid conversion for topology-optimised shapes (up to 20 000 faces)

Multi-Objective Optimisation (7 Solvers)

AlgorithmTypeBest For
SLSQPGradient-basedFast local optimisation with constraints
COBYLADerivative-freeNoisy or non-differentiable models
trust-constrInterior pointLarge-scale constrained problems
Differential EvolutionPopulation-basedGlobal search, black-box functions
NevergradMeta-optimiserAlgorithm-agnostic global search
NSGA-IIMulti-objective evolutionaryPareto fronts with 2–5 objectives
Multi-StartHybrid global+localAvoiding local minima via LHS starts

Global Sensitivity Analysis (4 Methods)

MethodIndicesUse Case
SobolS1, ST, S2 interactionVariance decomposition
Morrisμ, μ*, σScreening with few evaluations
FASTS1, STFourier decomposition, fast convergence
Delta (DMIM)δ, S1Moment-independent, distribution-based
  • Batch analysis across all outputs, convergence study, importance ranking (Critical / Important / Minor / Negligible)

Surrogate Modelling & Validation

  • 5 Algorithms — MLP Neural Network (PyTorch), Random Forest, Gradient Boosting, Gaussian Process, SVR
  • Cross-Validation — K-Fold (2–20 folds) and Leave-One-Out
  • Model Comparison — Automated comparison of all 5 algorithms on same dataset
  • Feature Importance — Permutation-based and tree-based importance analysis
  • Hyperparameter Optimisation — Grid search and random search with built-in search spaces

Solution Space Exploration

  • Monte Carlo Sampling — Vectorised evaluation of thousands of design variants
  • Visualisation — 2D scatter, parallel coordinates, feasibility maps
  • Product Family Analysis — Common platform identification across product variants
  • Step Analysis — Iterative box-size refinement

Import / Export

CategoryFormats
CAD ImportSTEP, IGES, STL, OBJ, BREP, 3MF
CAD ExportSTEP, STL, OBJ, BREP, SVG, DXF
Data ImportCSV, JSON, HDF5, Excel, MATLAB (.mat), Pickle
Data ExportCSV, JSON, HDF5, Excel, MATLAB, Pickle + HTML / Markdown reports
MeshVTK, VTU, Gmsh, Abaqus, Nastran, MED, XDMF
Project.pylcss archive (ZIP containing all graphs, settings, and results)

Engineering Tools

  • Expression Calculator — Safe AST-based evaluator (sin, cos, sqrt, log, conditionals, variables)
  • Unit Converter — 1000+ units via pint (SI, Imperial, CGS)

LLM-Powered Voice Assistant

  • Natural Language Control — “Zoom in”, “Create a helical gear”, “Go to properties”
  • Local STT — Faster-Whisper for real-time speech recognition
  • Multi-Provider LLM — OpenAI, Claude, Gemini, LM-Studio
  • Privacy-First — Optional fully local execution

Installation

Prerequisites

  • Python 3.8+
  • OS Windows 10/11 (macOS and Linux: experimental)

Quick Install

# Clone
git clone <repository-url>
cd pylcss

# Virtual environment
python -m venv .venv
# Windows:
.venv\Scripts\activate
# Linux/Mac:
source .venv/bin/activate

# Dependencies
pip install -r requirements.txt

# Launch
python scripts/main.py

Or on Windows: double-click run_gui.bat.


Quick Start

  1. Launch — python scripts/main.py
  2. Load a Model — File → Open → select data/Gear Unit.json
  3. Validate — Click “Validate” to check units and connections
  4. Solution Space — Switch to Solution Space tab → “Compute”
  5. Visualise — Plot Weight vs. Safety Factor
  6. Optimise — Go to Optimisation tab → select objectives → Run

Architecture

pylcss/
├── cad/                  # Parametric CAD kernel (CadQuery + OCC)
│   ├── nodes/            # 50+ node types (primitives, booleans, FEA, TopOpt)
│   ├── engine.py         # Graph execution engine
│   └── node_library.py   # Node registry
├── optimization/         # 7 solvers (SciPy, Nevergrad, NSGA-II, Multi-Start)
├── sensitivity/          # 4 methods (Sobol, Morris, FAST, Delta)
├── solution_space/       # Monte Carlo, step analysis, product families
├── surrogate_modeling/   # 5 ML algorithms + CV + HPO + feature importance
├── io_manager/           # CAD/mesh/data/project I/O (15+ formats)
├── system_modeling/      # Graph-based system model builder
├── assistant_systems/    # LLM voice assistant & tools
└── user_interface/       # PySide6 + VTK desktop application

Tech Stack

LayerTechnologies
UIPySide6, NodeGraphQt, QtAwesome
CADCadQuery, OpenCASCADE (OCP), VTK
FEAscikit-fem, Netgen, meshio
ComputationNumPy, SciPy, Pandas
VisualisationVTK (3D), pyqtgraph (2D)
MLPyTorch, scikit-learn
OptimisationSciPy, Nevergrad, SALib
Unitspint
Serialisationh5py, dill, joblib
AI AssistantFaster-Whisper, OpenAI, Edge-TTS

License

Licensed under the PolyForm Shield License 1.0.0.

Allowed: Personal use, academic research, internal business use. Restricted: You cannot use this software to build a competing product or service.

See LICENSE for full details.

Copyright © 2026 Kutay Demir. All rights reserved